Using Prize Rewards to Stimulate Innovation and Adoption in African Agriculture

William A. Masters
Professor of Agricultural Economics
Purdue University

wmasters@purdue.edu
www.agecon.purdue.edu/staff/masters
www.agecon.purdue.edu/prizes
www.fara-africa.org

Prize rewards: the story ahead

• African agriculture needs new innovation incentives
• We propose a new system of “prize rewards”:
 – a fixed sum, paid proportionally to measured value,
 – to reward innovators for value they create but cannot capture
 – to recognize successful approaches and attract other funding
• These slides detail our motivation and proposal
 – published in 3 refereed journal articles
 – discussed at >17 conferences and workshops
 – funded so far by Adelson Family Foundation and IFPRI
 – supported by 8-member advisory board
 – endorsed by NEPAD, for implementation through FARA
The problem:
Africa’s ag technology is far behind

Average cereal yields by region, 1961-2004

There are diminishing returns to inputs, e.g. simply adding more fertilizer

Fertilizer Use (N+P+K), 1961-2002

Sustaining growth requires new technologies, e.g. new varieties

Adoption of new varieties (pct. of cropped area)

Africa has had remarkably low public investment in crop improvement

Public agricultural R&D per capita, 1971-2000

Note: Sample varies from n=13 to 26 for SSA countries, and n=9 to 15 for OECD countries. Source: Agricultural R&D is from IFPRI (2003), available online at www.astc.cgiar.org; total population is from FAOStat (2004), available online at apps.fao.org.
Private R&D builds on public investment

Notes: Calculated from IFPRI (2003), available online at www.asti.cgiar.org. Data refer to various years from 1971 through 2000, and exclude the chemical and machinery sectors.

R&D has varied but high payoffs in all regions, including Africa

Estimated return to agricultural research and extension (%/year)

…but sustaining foreign aid for agricultural R&D has been difficult!

Figure 5: Real expenditures of the CGIAR, 1966-2000

USAID Funding for Research and Extension in Africa, FY1961-2001

Source: Gary Alex (2003), unpublished file data.

Prize rewards can jump-start innovation

- Agricultural innovation faces a severe market failure
 - value creation is measurable but dispersed among the poor
 - private investment is limited by cost of value capture
 - public investment is limited difficulty of predicting success

- Innovation can be accelerated with prize payments
 - to reward successful innovators
 - to recognize successful strategies:
 - attract private investment for marketable innovations
 - attract public funding to proven approaches
Prize initiatives are important but short-lived

• Prize programs are often needed
 – Rewards for personal accomplishment are widespread
 – Rewards for specific technologies arise as needed:
 • 1714-1773 British reward for computing longitude at sea
 • 1802-1809 French reward for food preservation
 • 1901-1940 Various rewards for civil aviation
 • 1995-2005 Ansari X-prize for civilian spaceflight

• Technology prizes are a temporary instrument
 – by revealing what works best, they are replaced by
 • private investment when the innovation is marketable
 • public grants and contracts when it is a public service

How prize rewards can help jump-start African agriculture

• Pre-specifying a traditional prize won’t work
 – farmers need a changing portfolio of new techniques
 – success requires location-specific knowledge

• but we can measure value with verifiable data
 – controlled experiments for output/input change
 – farm surveys for extent of adoption;
 – input and output prices

• so donors can reward social value like a market sale
 – announce funding, eligibility and measurement rules
 – assist innovators to compile data after adoption
 – verify data and pay out in proportion to measured gains
 – visibility of rewards leads others to imitate success
New technologies often involve multiple innovations

Genetic improvement
(by researchers, using controlled trials)

Agronomic improvement
(by farmers, using land & labor)

Successful innovations are often surprising

traditional “flat” planting

labor-intensive “Zai” microcatchments

For these fields, the workers are:
Prize rewards can stimulate any kind of innovation whose value is measurable.

Improved fish-drying in Senegal using hermetic bags to store crops.

Implementing Prizes:

Schematic overview

Step 1:
donors specify lines of credit for target domains (e.g. $1 m. for food crops)

Step 2:
innovators submit data on gains from new techniques after adoption (e.g. $36 m. over 7 submissions)

Prizes would be a small fraction of total activity, but a key market-like signal of value

Impact:
other donors, investors and innovators imitate successes

Step 3:
secretariat verifies data and computes reward payments (e.g. 1/36th of measured gains)
Implementing Prizes:
An example using case study data

<table>
<thead>
<tr>
<th>Example technology</th>
<th>Measured Social Gains (NPV in US$)</th>
<th>Measured Social Gains (Pct. of total)</th>
<th>Reward Payment (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cotton in Senegal</td>
<td>14,109,528</td>
<td>39.2%</td>
<td>392,087</td>
</tr>
<tr>
<td>2. Cotton in Chad</td>
<td>6,676,421</td>
<td>18.6%</td>
<td>185,530</td>
</tr>
<tr>
<td>3. Rice in Sierra Leone</td>
<td>6,564,255</td>
<td>18.2%</td>
<td>182,413</td>
</tr>
<tr>
<td>4. Rice in Guinea Bissau</td>
<td>4,399,644</td>
<td>12.2%</td>
<td>122,261</td>
</tr>
<tr>
<td>5. “Zai” in Burkina Faso</td>
<td>2,695,489</td>
<td>7.5%</td>
<td>74,904</td>
</tr>
<tr>
<td>6. Cowpea storage in Benin</td>
<td>1,308,558</td>
<td>3.6%</td>
<td>36,363</td>
</tr>
<tr>
<td>7. Fish processing in Senegal</td>
<td>231,810</td>
<td>0.6%</td>
<td>6,442</td>
</tr>
<tr>
<td>Total</td>
<td>$35.99 m.</td>
<td>100%</td>
<td>$1 m.</td>
</tr>
</tbody>
</table>

Note: With payment of $1 m. for measured gains of about $36 m., the implied royalty rate is approximately $1/36 = 2.78% of measured gains.

Implementing Prizes:
Data requirements

Data needed to compute each year’s economic gain from technology adoption

Variables and data sources

- **Market data**
 - P, Q National ag. stats.

- **Field data**
 - J Yield change × adoption rate
 - I Input change per unit

- **Economic parameters**
 - K Supply elasticity (≈1 to omit)
 - ΔQ Demand elasticity (≈0 to omit)
Implementing Prizes:
Data requirements

Data needed to estimate adoption rates across years

Implementing Prizes:
Data requirements

Computation of cumulative economic gains
Implementing prizes:
What’s done, what’s next

• Refinement and endorsement of the proposal
 – many meetings, publications and citations since 2003
 – formal Advisory Board formed October 2004
 – formal FARA commitment September 2005

• Funding for project development
 – Adelson Family Foundation (New York), 2004-06
 – IFPRI (Addis Ababa), 2006-08

• Funding for prize rewards
 – significant interest from various donors
 – could be funded directly through FARA

For more information…

wmasters@purdue.edu

www.agecon.purdue.edu/staff/masters
www.agecon.purdue.edu/prizes
www.fara-africa.org
Advisory Board
Simeon Ehui (World Bank)
Robert Evenson (Yale)
Richard Nelson (Columbia)
Phil Pardey (Minnesota)
Carl Pray (Rutgers)
Jock Anderson (World Bank)
Alain de Janvry (UC Berkeley)
Bruce Gardner (U of Maryland)
Oumar Niangado (Syngenta Fndtion)
George Norton (Virginia Tech)
Rob Paarlberg (Wellesley)
Prabhu Pingali (FAO)
Per Pinstrip-Andersen (Cornell)
Jim Ryan (Australia, former DG of ICRISAT)
Eugene Terry (former DG of WARDA)

Other endorsements to date
Walter Alhassan (Ghana, former DG of CSIR)
Julian Alston (UC Davis)
Jock Anderson (World Bank)
Alain de Janvry (UC Berkeley)
Bruce Gardner (U of Maryland)
Anil K. Gupta (Natl. Innovation Found., India)
Michael Kremer (Harvard)
Jenny Lanjouw (Berkeley)
Richard Mkandawire (NEPAD)
Oumar Niangado (Syngenta Fndtion)
George Norton (Virginia Tech)
Rob Paarlberg (Wellesley)
Prabhu Pingali (FAO)
Per Pinstrip-Andersen (Cornell)
Jim Ryan (Australia, former DG of ICRISAT)
Eugene Terry (former DG of WARDA)