Massaging Data

Parameters/scalars can also be set by assignment

- SCALAR rho ;
- rho = 10 ;

Assignments are performed in order

- SCALAR a / 15 / ;
- a = a/3 ;
- a = a*2 ;

Here is an example where ALIAS helps:

- SET i / z1*z4 / ;
- ALIAS (i,j) ;
- PARAMETER s(i,j) A matrix ;
- s(i,j) = 1 ;
- s('z1',j) = 2 ;
- s(j,j) = 3 ;
Massaging Data

Let’s see what happens during assignments:

\[
\begin{align*}
\text{s(i,j)} &= 1; \\
\text{s('z1',j)} &= 2; \\
\text{s(j,j)} &= 3; \\
\end{align*}
\]

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Displaying Results

Displaying results during execution can be useful

E.g., the following might be useful to see in the above program:

- DISPLAY “s after one assignment”, s;
- DISPLAY “s after two assignments”, s;

Note we can display titles and that domain lists are not specified in DISPLAY commands
Data Massaging

- $aX^b = a(X^b)$ or $(aX)^b$?

- Usually, one takes the first answer as being correct

- Why is this, and are there any general rules?

Data Massaging

- Arithmetic is a lot like Excel, BASIC, C and other languages
 - Precedence of operations is:
 - Exponentiation (**)
 - Multiplication (*) and division (/)
 - Addition (+) and subtraction (-)
 - All numbers are treated as real with a few extensions
Data Massaging

- With real numbers, a computer calculates y^x as $\exp(x \log(y))$
 - This is a problem if $y \leq 0!$
 - However y^x makes sense when $y \leq 0$ when x is an integer (a whole number)
- GAMS provides a special function: $y^x = \text{POWER}(y, x)$ that works for integer x and all y

Other functions operate over sets
- SET row / r1,r2 /, col / c1*c3 /;
- TABLE data(row,col) A bunch of numbers
 - c1 c2 c3
 - r1 1 2 5
 - r2 3 3 1;
- PARAMETER rowsum(row);
 - rowsum(row) = $\text{SUM}(\text{col}, \text{data}(\text{row}, \text{col}))$;
- SCALAR matsum;
 - matsum = $\text{SUM}((\text{row}, \text{col}), \text{data}(\text{row}, \text{col}))$;
Data Massaging

- Other functions that operate over sets:
 - PROD(i,s(i)) yields the product over the set i of the values in the parameter s(i)
 - SMIN(j,s(j)) yields the minimum value in s(j) ranging over the set j
 - SMAX is analogous to SMIN, but produces the maximum rather than the minimum

Data Massaging

- The following provides examples of PROD, SMIN, and SMAX:
 - SET j / 1*3 / ;
 - PARAMETER x(j) / 1 5, 2 3, 3 2 / ;
 - SCALAR xprod,xmin,xmax ;
 - xprod = PROD(j,x(j)) ;
 - xmin = SMIN(j,x(j)) ;
 - xmax = SMAX(j,x(j)) ;
- Results: xprod = 30, xmin = 2, xmax = 5
Data Massaging

GAMS extends arithmetic as follows

<table>
<thead>
<tr>
<th>Values</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x y x**y</td>
<td>POWER(x,y) x/y</td>
</tr>
<tr>
<td>2 2 4</td>
<td>4 1</td>
</tr>
<tr>
<td>-2 2 UNDF</td>
<td>4 -1</td>
</tr>
<tr>
<td>2 2.1 4.29</td>
<td>UNDF 0.95</td>
</tr>
<tr>
<td>NA 2.5 NA NA NA</td>
<td></td>
</tr>
<tr>
<td>3 0 1</td>
<td>1 UNDF</td>
</tr>
<tr>
<td>INF 2 INF INF INF</td>
<td></td>
</tr>
<tr>
<td>2 INF UNDF UNDF 0</td>
<td></td>
</tr>
</tbody>
</table>

Conditional assignments can also be used

SET j /1*5/; m(j) /1,3,5/;
ALIAS (j, jj);
PARAMETERS a(j), g(j), s(j);
a(j) = ord(j); g(j) = a(j);
a(j) = 1$(ord(j) le 3);
g(j)$$(ord(j) le 3) = 1;
s(j) = (g(j)-1)/sum(jj, g(jj)-2);
a(m) = (1/g(m))$$(ord(m) eq 2) or (ord(m) eq 3));
s(j)$s(j) = 1/s(j);
Data Massaging

Line 4: \(a(j) = \text{ord}(j) \ ; \ g(j) = a(j) \ ; \)
After line 4: \(a(j) = [1,2,3,4,5], \ g(j) = [1,2,3,4,5] \)
Line 5: \(a(j) = 1$(\text{ord}(j) \leq 3) \ ; \)
After line 5: \(a(j) = [1,1,1,0,0], \ g(j) = [1,2,3,4,5] \)
Line 6: \(g(j)$$(\text{ord}(j) \leq 3) = 1 \ ; \)
After line 6: \(a(j) = [1,1,1,0,0], \ g(j) = [1,1,1,4,5] \)
Line 7: \(s(j) = (g(j)-1)/\text{sum}(jj,g(jj)-2) \ ; \)
After line 7: \(a(j) = [1,1,1,0,0], \ g(j) = [1,1,1,4,5], \)
\(s(j) = [0,0,0,1.5,2] \)

Data Massaging

Line 8:
\(a(m) = (1/g(m))$((\text{ord}(m) \text{ eq } 2) \text{ or } (\text{ord}(m) \text{ eq } 3)) \ ; \)
\(a(m) = (1/g(m))$((\text{ord}(m) \text{ eq } 2) \text{ or } (\text{ord}(m) \text{ eq } 3)) ; \)
After line 8: \(a(j) = [0,1,1,0,0.2], \ g(j) = [1,1,1,4,5], \)
\(s(j) = [0,0,0,1.5,2] \)
Line 9: \(s(j)$s(j) = 1/s(j) \ ; \)
After line 9: \(a(j) = [1,1,1,0,0.2], \ g(j) = [1,1,1,4,5], \)
\(s(j) = [0,0,0,0.667,0.5] \)
Data Massaging

Summary
- Conditional statements involving EQ, LE, GE, LT, GT may all be used
- Compound conditions can use AND, OR and NOT
- If the condition appears on the right-hand side of the assignment and is false the preceding token vanishes
- If the condition appears on the left-hand side of the assignment and is false the assignment is not performed
- Numbers have logical value: only zero is FALSE

IF … THEN … ELSE structure is useful when a list of operations depends on one condition:
- IF (alpha GT beta,
 s(i) = t(i)**2 ;
 g(i) = s(i) + t(i) ;
ELSE
 s(i) = 0 ;
 g(i) = 7 ;
) ;
Variables

- Unlike parameters, variables are “concepts” rather than numbers
- Values for variables are typically computed by solving a model
- A variable’s value may also be initialized prior to solving a model

Purdue University Ag. Econ. 652
Lecture 4
17

Variables

- Variables are declared via a VARIABLES statement:
 - VARIABLES x(time),y(time,space),z ;
 - VARIABLES bananas(tree) Number of bananas per tree
 - snakes(pit,t) Number of snakes in pit at time t ;
- Including units in comments is a good idea!

Purdue University Ag. Econ. 652
Lecture 4
18
Variables

In addition to values, variables have bounds

- One way to set the bounds is through the declaration:

  ```
  POSITIVE VARIABLE x;
  ```

 - `x` will be bounded between 0 and `+INF`

- The word `POSITIVE` determines the bounds

Other variable types and their bounds:

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATIVE</td>
<td>−INF</td>
<td>0</td>
</tr>
<tr>
<td>FREE (Default)</td>
<td>−INF</td>
<td>+INF</td>
</tr>
<tr>
<td>INTEGER</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>BINARY</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Integer and binary types must also be whole numbers
Variables

- We refer to attributes (e.g., bounds, values) via suffixes:

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.LO</td>
<td>Lower bound</td>
</tr>
<tr>
<td>.UP</td>
<td>Upper bound</td>
</tr>
<tr>
<td>.L</td>
<td>Current level</td>
</tr>
<tr>
<td>.M</td>
<td>Marginal (i.e., penalty cost)</td>
</tr>
</tbody>
</table>

- A variable with a suffix appended acts just like a parameter:

  ```
  x.lo(j) = 7;
  land.up = 100;
  area.l(crop,t) = base.l(crop,t);
  ```

- The exception is the additional bound type .FX which refers to both upper and lower bounds simultaneously
Equations

These are declared much like variables:

- EQUATIONS
 - cost Cost function
 - prd(t) Production in period t
 - bal(t,s) Balance in period t at site s

Structure of equations is defined by a special type of assignment:

- cost .. total =E= sum(t,output(t)*costs(t)) ;

Form is:

- <eqn. name> .. <expression> <rel> <expression>;
The different types of relations are:

<table>
<thead>
<tr>
<th>Relation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=E=</td>
<td>=</td>
</tr>
<tr>
<td>=L=</td>
<td>≤</td>
</tr>
<tr>
<td>=G=</td>
<td>≥</td>
</tr>
</tbody>
</table>

Note that there are no strict inequalities – those make sense mathematically, but not for numerical mathematical programming.

Equations can be indexed:

\[\text{prd}(t) \text{.. SUM}(g,\text{supply}(g,t)) =\leq \text{demand}(t) \; \]

Conditions can be used to define equations:

\[\text{prd}(t) \text{.. SUM}(g,\text{supply}(g,t)) =\leq \text{demand}(t)(\text{ORD}(t) > 1) \; \]
Equations

- Conditions can also be used to suppress equations:

 \[\text{prd}(t) \text{\$}(\text{ORD}(t) \text{ gt } 1) \text{..} \]
 \[\text{SUM}(g, \text{supply}(g, t)) = \text{demand}(t) ; \]

- Conditions for *equation assignments* work the same as for parameter assignments

- This only works with "" not with IF … ELSE
Equations

- Like variables, suffixes are used to refer
 - Level (.L)
 - Lower bound (.LO)
 - Upper bound (.UP)
 - Marginal (.M) which is also called the shadow price

Model Statement

- The model declaration serves two functions:
 - Naming the model
 - Providing a list of the equations in the model

- Examples of valid model commands:
 - MODEL economy / bal, cost / ;
 - MODEL route A vehicle routing model / ALL / ;
Solve Statement

- The solve statement instructs GAMS to assemble the equations for a particular model based on current parameter values and solve.
- It also tells GAMS what type of model it is (and therefore what to use to solve it).
- Finally, the solve statement indicates what variable is to be optimized and whether it should be minimized or maximized.

Solve Statement

- Here are some legitimate solve statements:
 - SOLVE economy USING LP MAXIMIZING gdp ;
 - SOLVE route USING NLP MINIMIZING fuelcost ;
- The general form is:
 - SOLVE <model name> USING <model type> <MINIMIZING or MAXIMIZING> <variable name> ;
Solve Statement

Principle model types are:

<table>
<thead>
<tr>
<th>Type</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>Linear program</td>
</tr>
<tr>
<td>MIP</td>
<td>Mixed integer program</td>
</tr>
<tr>
<td>RMIP</td>
<td>Relaxed mixed integer program</td>
</tr>
<tr>
<td>NLP</td>
<td>Nonlinear program</td>
</tr>
<tr>
<td>DNLP</td>
<td>Nondifferentiable nonlinear program</td>
</tr>
<tr>
<td>MCP</td>
<td>Mixed complementarity problem</td>
</tr>
</tbody>
</table>

More on Sets

Set membership can also be achieved by direct assignment:

```plaintext
SET firms All firms / i1*i2000 /
efirms(firms) Efficient firms ;
...
efirms(firms)=YES$(profit.l(firms) EQ opt.l(firms)) ;
```
More on Sets

- In some models it is useful to be able to refer to the “current”, “next” or “previous” element of a set:
 - The current element is referred to as $x(j)$
 - The next element is $x(j+1)$ this is called a “lead”
 - The previous element is $x(j-1)$ this is called a “lag”

- This only works if the set is ordered.

More on Sets

- Complications come at the ends of the set:
 - What does $x(j-1)$ mean if j is the first element in the set?
 - What does $x(j+1)$ mean if j is the last element in the set?

- The answer in both cases is zero!

- These are called “end-off” lags and leads.
More on Sets

- Sometimes lagging from the first set element should give the last element, and
- Leading from the last element should give the first element
- (This is like time on a clock 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2,...)
- These are called circular leads and lags

More on Sets

- Circular leads and lags are specified by doubling the lead or lag operator
Data Massaging

- When a block of commands needs to be done in sequence across a set, use LOOP:

```plaintext
SET j / 1*4 / ;
PARAMETERS a(j),b(j) ;
b(j) = 2 ;
LOOP(j,
a(j) = a(j-1) + b(j) ;
);
```

- At the end, a(j) = [2,4,6,8]