Introduction to GAMS

An Example of a Transportation Problem

Example – A Transportation Problem

 maximizing \[z = \sum_{i} \sum_{j} c_{ij}x_{ij} \]

subject to:

\[\sum_{i} x_{ij} \geq b_j \quad j = 1, \ldots, m \]

\[\sum_{j} x_{ij} \leq a_i \quad i = 1, \ldots, n \]
Video Goes Here
Sets
 1 canning plants / seattle, san-diego /
 2 markets / new-york, chicago, topeka / ;

Parameters
 m(i) capacity of plant i in cases
 / seattle 350 san-diego 400 / ;
 b(j) demand at market j in cases
 / new-york 325 chicago 300 topeka 275 / ;
Table d(i,j) distance in thousands of miles
 new-york chicago topeka
 seattle 2.5 1.7 1.8
 san-diego 2.5 1.8 1.6 ;

Scalar f freight in dollars per case per thousand miles /90/ ;
Parameter c(i,j) transport cost in thousands of dollars per case ;

\[
c(i,j) = f \times d(i,j) / 1000 ;
\]

Variables
 x(i,j) shipment quantities in cases
 z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations
 cost define objective function
 supply(i) observe supply limit at plant i
 demand(j) satisfy demand at market j ;

 cost .. \[z = \text{e} = \sum_{i,j} c(i,j) \times x(i,j) ; \]
 supply(i) .. \[\sum_{j} x(i,j) = a(i) ; \]
 demand(j) .. \[\sum_{i} x(i,j) = b(j) ; \]

Model transport /all/ ;
Solve transport using ip minimizing z ;
Display x.l, x.m ;
This problem finds a least cost shipping schedule that meets requirements at markets and suppliers at factories.

References:
Dantzig, G B., Linear Programming and Extensions
Princeton University Press, Princeton, New Jersey, 1963,
Chapter 3-1.

This formulation is described in detail in Chapter 2
(A. E. S. Cooke, D. Kendrick and A. Meeraus, The Scientific Press,
Redwood City, California, 1981.)

The line numbers will not match those in the book because of these comments.

Sets
1. canning plants / seattle, san-diego /
2. j. markets / new-york, chicago, topeka / ;

Parameters
31. a(i) capacity of plant i in cases
32. / seattle 500
33. / san-diego 600 /
34. b(j) demand at market j in cases
35. / new-york 350
36. / chicago 300
37. / topeka 275 / ;

Table d(i,j) distance in thousands of miles
38. new-york chicago topeka
39. seattle 2.5 1.7 1.0
40. san-diego 2.5 1.0 1.2

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;
46. c(i,j) = f * d(i,j) / 900 ;
Variables

x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars

Positive Variable x;

Equations
cost define objective function
supply(i) observe supply limit at plant i

A Transportation Problem [TRANSOPT,SEQ=1]

\[
\text{demand}(j) \text{ satisfy demand at market } j ;
\]

\[
\text{cost} \quad z = \sum_{i,j} c(i,j) \cdot x(i,j) ;
\]

\[
\text{supply}(i) \quad \sum_{j} x(i,j) = b(i) ;
\]

\[
\text{demand}(j) \quad \sum_{i} x(i,j) = d(j) ;
\]

Model transport /all/ ;
Solve transport using ip minimize z ;

Display x.l, x.m ;

--- COST define objective function

COST.. 0.225*x(seattle,new-york) + 0.153*x(seattle,chicago)
 - 0.162*x(seattle,tokyo) - 0.225*x(san-diego,new-york)
 = 0.162*x(san-diego,chicago) + 0.128*x(san-diego,tokyo) + z = 0 ;

---- SUPPLY observe supply limit at plant i

SUPPLY(seattle).. x(seattle,new-york) + x(seattle,chicago)
---- SUPPLY
"L" observe supply limit at plant i

SUPPLY(seattle).. X(seattle,new-york) + X(seattle,chicago) + X(seattle, topeka) =L= 350 ; (LHS = 0)

SUPPLY(san-diego).. X(san-diego,new-york) + X(san-diego,chicago) + X(san-diego, topeka) =L= 600 ; (LHS = 0)

---- DEMAND
"M" satisfy demand at market j

DEMAND(new-york).. X(seattle,new-york) + X(san-diego,new-york) =G= 325 ;
(LHS = 0, INFES = 325 ***)

DEMAND(chicago).. X(seattle,chicago) + X(san-diego,chicago) =G= 300 ;
(LHS = 0, INFES = 300 ***)

DEMAND(topeka).. X(seattle,topeka) + X(san-diego,topeka) =G= 275 ;
(LHS = 0, INFES = 275 ***)

---- X
shipment quantities in cases

X(seattle,new-york)
.LO .L .UF = 0 0 +INF
=0.325 COST
1 SUPPLY(seattle)
1 DEMAND(new-york)

X(seattle,chicago)
.LO .L .UF = 0 0 +INF
=0.153 COST
1 SUPPLY(seattle)
1 DEMAND(chicago)

X(seattle,topeka)
.LO .L .UF = 0 0 +INF
X(seattle, topeka)
(.LO, .L, .UP = 0, 0, +INF)
-0.142 COST
1 SUPPLY(seattle)
1 DEMAND(topeka)

REMAINING 3 ENTRIES SKIPPED

TOTAL TRANSPORTATION COSTS IN THOUSANDS OF DOLLARS

2

(.LO, .L, .UP = -INF, 0, +INF)
1 COST

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6

EXECUTION TIME = 0.640 SECONDS 1.4 Kb WIN-18-096

SOLVE SUMMARY

MODEL TRANSPORT OBJECTIVE Z
MODEL TRANSPORT OBJECTIVE 2
TYPE LP DIRECTION MINIMIZE
SOLVER MINOS FROM LINE 70

***** SOLVER STATUS 1 NORMAL COMPLETION
***** MODEL STATUS 1 OPTIMAL
***** OBJECTIVE VALUE 153.6750

RESOURCE USAGE, LIMIT 0.551 10000.000
ITERATION COUNT, LIMIT 5 10000

MINOS Feb 28, 1999 WIN.MS.18.0 105.094.036.WAT GAMS/MIOS 5.4

B. A. Murtagh, University of New South Wales
and
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright
Systems Optimization Laboratory, Stanford University.

Work space allocated -- 0.04 Mb

-- OPTIMAL SOLUTION FOUND

---- EQU COST

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

COST define objective function

---- EQU SUPPLY observe supply limit at plant i

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

seattle -INF 300.000 350.000 .
san-diego -INF 600.000 600.000 .

---- EQU DEMAND satisfy demand at market j

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

new-york 325.000 325.000 +INF 0.225
GAMS View of a Problem

\[
\begin{align*}
\text{optimize } & \quad z \\
\text{subject to :} & \quad z = f(x) \\
& \quad g_j \leq g_j(x) \leq \bar{g}_j \quad j = 1, \ldots, m \\
& \quad l_i \leq x_i \leq u_i \quad i = 1, \ldots, n
\end{align*}
\]

Bounded Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Lower Bd.</th>
<th>Upper Bd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq)</td>
<td>(-\infty)</td>
<td>(b)</td>
</tr>
<tr>
<td>(\geq)</td>
<td>(b)</td>
<td>(+\infty)</td>
</tr>
<tr>
<td>(=)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Finite upper and lower bounds simultaneously can be accommodated
Shadow Prices/Penalty Costs

- Shadow prices are “marginals”

\[
\begin{align*}
\text{optimize} & \quad z \\
\text{subject to:} & \\
& z = f(x) \\
& g_j \leq g_j(x) \leq \bar{g}_j \quad j = 1, \ldots, m \\
& l_i \leq x_i \leq u_i \quad i = 1, \ldots, n
\end{align*}
\]
EQU DEMAND

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>new-york</td>
<td>325,000</td>
<td>325,000</td>
<td>+INF</td>
</tr>
<tr>
<td>chicago</td>
<td>300,000</td>
<td>300,000</td>
<td>+INF</td>
</tr>
<tr>
<td>topeka</td>
<td>275,000</td>
<td>275,000</td>
<td>+INF</td>
</tr>
</tbody>
</table>

A Transportation Problem (TRANSPOST, SEQ=1)

VAR X

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>seattle</td>
<td>new-york</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>seattle</td>
<td>chicago</td>
<td>300,000</td>
<td>+INF</td>
</tr>
<tr>
<td>seattle</td>
<td>topeka</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>san-diego</td>
<td>new-york</td>
<td>325,000</td>
<td>+INF</td>
</tr>
<tr>
<td>san-diego</td>
<td>chicago</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>san-diego</td>
<td>topeka</td>
<td>275,000</td>
<td>+INF</td>
</tr>
</tbody>
</table>

VAR Z

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>-INF</td>
<td>155.475</td>
<td>+INF</td>
</tr>
</tbody>
</table>

Z total transportation costs in thousands of dollars

REPORT SUMMARY:

0	SCANEOF
0	INFEASIBLE
0	UNBOUNDED

GAMS 2.50A Windows NT/95 12/15/00 14:11:57 PAGE 8

A Transportation Problem (TRANSPOST, SEQ=1)

72 VARIABLE X.L

<table>
<thead>
<tr>
<th>new-york</th>
<th>chicago</th>
<th>topeka</th>
</tr>
</thead>
<tbody>
<tr>
<td>325,000</td>
<td>275,000</td>
<td></td>
</tr>
</tbody>
</table>

72 VARIABLE X.M

<table>
<thead>
<tr>
<th>new-york</th>
<th>chicago</th>
<th>topeka</th>
</tr>
</thead>
<tbody>
<tr>
<td>325,000</td>
<td>275,000</td>
<td></td>
</tr>
</tbody>
</table>