Obesity in Urban Food Markets
Evidence from georeferenced micro data

Susan E. Chen1, Raymond J.G.M. Florax1,2 and Samantha D. Snyder1

1 Dept. of Agricultural Economics, Purdue University
Space, Health and Population Economics (SHAPE) Program
West Lafayette, USA

2 Dept. of Spatial Economics, VU University Amsterdam
Amsterdam, The Netherlands

rflorax@purdue.edu
http://web.ics.purdue.edu/~rflorax/
Outline

- Introduction
 - obesity epidemic
 - potential causes

- Theory and data
 - assessment empirical literature
 - health production function
 - data, descriptive statistics, and maps

- Methods and regression results
 - OLS and diagnostics
 - random neighborhood effects
 - spatial ARAR model

- Policy experiments

- Conclusions
Introduction
Obesity epidemic in the US

- BMI = kg/m²

<table>
<thead>
<tr>
<th>BMI</th>
<th>< 18.5</th>
<th>18.5–25</th>
<th>25–30</th>
<th>> 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg (1.75m)</td>
<td>< 57</td>
<td>57–77</td>
<td>77–92</td>
<td>> 92</td>
</tr>
</tbody>
</table>

- United States, between 1980 and 2000
 - obesity rates +27% for men, +48% for women
 - rates of overweight +166% for men, +62% for women
 - disparities in prevalence across groups

- Indiana, in 2005
 - 35.1% overweight,
 - 27.2% obese
 - 10th in country

- Implications
 - health care costs
Spatial topology of urban food markets

• Potential causes for epidemic
 – value of time
 – sedentary lifestyle
 – lower cost food away from home
 – better transportation
 – # per capita restaurants
 – ...
 – stricter non-smoking laws
 – lower savings

• Many issues left
 – inconsistencies in a new field
 – data issues

• Focus of this research
 – obesity in urban food markets
 – is there a causal relationship between (lack of) access to fast food outlets and large grocery stores and obesity?
Assessment state-of-the-art

- Main findings literature
 - minority and low income populations differential access to grocers
 - availability of grocery stores associated with healthier diets, lower rates of obesity
 - effect of access to fast food less clear

- Selection effects complicate causal interpretation
 - people select into neighborhoods based on neighborhood characteristics (spatial sorting)
 - stores and food outlets locate in neighborhoods where they will make a profit (location and spatial competition)

- Spatial dependence should be incorporated
 - (unobserved) social and environmental factors affect people’s health behavior
 - spatial data!

- Danger of ecological fallacy
 - due to use of aggregate data
Behavioral model
Health production function

- **Micro-economic setup**
 - major role for technological change (Cutler et al. 2003)
 - implications for real value of time
 - and hence for preference food away from home and pre-prepared highly processed high-caloric foods at home

- **Formally**
 - $h = f(F,C)$
 - $\max U(h,C)$ subject to $pF + C = I$
 - assuming interior solution, first order conditions
 - $\lambda_1 p - \lambda_2 f_F = 0$
 - $U_C + \lambda_1 - \lambda_2 f_C = 0$
 - $-I + pF + C = 0$
 - $-f(F,C) + h = 0$
 - substitution leads to
 - $-f(F,I - pF) + f(F,I - pF) = 0$
 - optimization results in the reduced form demand equations
 - $F^* = g(I,p)$; $C^* = h(I,p)$; and $h^* = j(I,p)$
 - note, vector p is function of price of food and travel cost
Empirical framework

- Health (BMI) function of prices (incl. travel cost)
 \[h_{ij} = P_{ij}y_1 + \varepsilon_{ij} \]

- Selection effect
 - spatial sorting into neighborhoods
 \[h_{ij} = P_{ij}y_1 + X_{ij}\beta + N_{ij}y_2 + \varepsilon_{ij} \]
 - unobservable individual and neighborhood effects still create bias
 - so, instrument \(P_{ij} \)

- Account for spatial effects
 - neighborhood heterogeneity with random effects, or
 - (unobserved) social and environmental factors causing spatial correlation
 - spatial ARAR model
 \[
 h = \lambda Wh + P\gamma_1 + X\beta + N\gamma_2 + \varepsilon, \quad \varepsilon = \rho W\varepsilon + \mu
 \]
Data
Case study for Indianapolis, Marion County
Census tracts
Median family income
Data

- Marion County Obesity Needs Assessment Survey
 - information on demographics, behavior, health
 - 3605 adults, including (x,y) coordinates, in 2005

- Marion County Health Department sanitation inspection records
 - selected and classified large grocery stores and fast food restaurants, with (x,y) coordinates of retailers, in 2005

- Indiana Spatial Data Portal
 - zoning maps, for 2004

- Indianapolis Metropolitan Police Department
 - Crime Reporting Data for 2007, with (x,y) coordinates of crimes
Descriptive stats

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonwhite</td>
<td>0.30</td>
<td>0.46</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Female</td>
<td>0.58</td>
<td>0.49</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Age</td>
<td>46.99</td>
<td>14.22</td>
<td>21.00</td>
<td>75.00</td>
</tr>
<tr>
<td>Less than 200% of the FPL</td>
<td>0.20</td>
<td>0.40</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>More than high school</td>
<td>0.65</td>
<td>0.48</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Vigorous physical activity per week</td>
<td>2.68</td>
<td>2.34</td>
<td>0.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Physically demanding job</td>
<td>0.41</td>
<td>0.49</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>smoker</td>
<td>0.26</td>
<td>0.44</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>27.63</td>
<td>6.11</td>
<td>10.02</td>
<td>61.99</td>
</tr>
<tr>
<td>Obese</td>
<td>0.27</td>
<td>0.44</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>No. large groceries (1/2 mile radius)</td>
<td>0.34</td>
<td>0.66</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>No. fast food (1/2 mile radius)</td>
<td>1.77</td>
<td>2.69</td>
<td>0.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Percent zoned non-residential</td>
<td>0.32</td>
<td>0.21</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>No. serious crimes (1/2 mile radius)</td>
<td>27.11</td>
<td>30.50</td>
<td>0.00</td>
<td>222.00</td>
</tr>
</tbody>
</table>

N = 3605
Healthy, overweight, obese

BMI
- healthy
- overweight
- obese

Median family income
- 18625 - 33750
- 33751 - 45769
- 45770 - 58684
- 58685 - 78990
- 78991 - 140217
BMI, Thiessen polygons
Hot spots of low and high BMI individuals
Local food environment, high-income suburb

BMI
- healthy
- overweight
- obese
- Chain store
- Fast food outlet

Median family income
- 18625 - 33750
- 33751 - 45769
- 45770 - 58684
- 58685 - 78990
- 78991 - 140217
Local food environment, down town neighborhood
Methods and regression results
OLS results

<table>
<thead>
<tr>
<th></th>
<th>OLS(1)</th>
<th>OLS(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. fast food (1/2 mile radius)</td>
<td>0.055</td>
<td>0.052</td>
</tr>
<tr>
<td>No. large groceries (1/2 mile radius)</td>
<td>-0.303*</td>
<td>-0.159</td>
</tr>
<tr>
<td>Nonwhite</td>
<td></td>
<td>0.972**</td>
</tr>
<tr>
<td>Female</td>
<td>-0.343*</td>
<td>0.404**</td>
</tr>
<tr>
<td>Age</td>
<td>0.404**</td>
<td>0.004**</td>
</tr>
<tr>
<td>Age2</td>
<td></td>
<td>-0.004**</td>
</tr>
<tr>
<td>Less than 200% of the FPL</td>
<td></td>
<td>1.158**</td>
</tr>
<tr>
<td>More than high school</td>
<td></td>
<td>-0.854**</td>
</tr>
<tr>
<td>Vigorous physical activity work</td>
<td></td>
<td>-0.320**</td>
</tr>
<tr>
<td>Physically demanding job</td>
<td></td>
<td>-0.603**</td>
</tr>
<tr>
<td>Smoker</td>
<td></td>
<td>-1.339**</td>
</tr>
<tr>
<td>No. serious crimes (1/2 mile radius)</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>27.669**</td>
<td>19.777**</td>
</tr>
<tr>
<td>R2</td>
<td>0.0002</td>
<td>0.064</td>
</tr>
<tr>
<td>N</td>
<td>3550</td>
<td>3550</td>
</tr>
</tbody>
</table>

* 0.05 < p < 0.10, ** p < 0.05, White-adjusted standard errors
Modeling setup

- **“Standard” approach**
 - use random effects at the census tract level
 - non-zero covariances in variance-covariance matrix
 - does not model spatial dependence

- **Selection effects**
 - spatial sorting across neighborhoods of individuals
 - location choice and spatial competition food retailers

- **Instrumental variables**
 - potentially endogenous variables
 - fast food access and grocery store access
 - grocery stores: people drive, low marginal cost distance
 - fast food outlets: local consumption, high marginal cost of distance, selection criterion for location

- **Instrument for fast food**
 - percent of non residential zoning within 1/2 mile radius
Spatial heterogeneity and dependence

- Spatial ARAR model allowing for heteroskedasticity
 - recall, \(h = \lambda Wh + \gamma_1 + X\beta + N_{\gamma_2} + \epsilon, \epsilon = \rho \epsilon + \mu \)
 - instruments needed for \(Wh \) and fast food outlets
 - spatial generalized two stage least squares estimator
 - multi-round IV/GM approach (Kelejian and Prucha, 2007)

- Regression results
 - strong social network ties among individuals and
 - shared unobserved neighborhood characteristics across individuals living in proximate neighborhoods
Results including ARAR specification

<table>
<thead>
<tr>
<th></th>
<th>OLS(1)</th>
<th>OLS(2)</th>
<th>ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. fast food (1/2 mile radius)</td>
<td>0.055</td>
<td>0.052</td>
<td>0.201**</td>
</tr>
<tr>
<td>No. large groceries (1/2 mile radius)</td>
<td>-0.303*</td>
<td>-0.159</td>
<td>-0.481*</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>0.972**</td>
<td>0.506**</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-0.343*</td>
<td>-0.336*</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.404**</td>
<td>0.393**</td>
<td></td>
</tr>
<tr>
<td>Age²</td>
<td>-0.004**</td>
<td>-0.004**</td>
<td></td>
</tr>
<tr>
<td>Less than 200% of the FPL</td>
<td>1.158**</td>
<td>1.059**</td>
<td></td>
</tr>
<tr>
<td>More than high school</td>
<td>-0.854**</td>
<td>-0.641**</td>
<td></td>
</tr>
<tr>
<td>Vigorous physical activity work</td>
<td>-0.320**</td>
<td>-0.302**</td>
<td></td>
</tr>
<tr>
<td>Physically demanding job</td>
<td>-0.603**</td>
<td>-0.576**</td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td>-1.339**</td>
<td>-1.368**</td>
<td></td>
</tr>
<tr>
<td>No. serious crimes (1/2 mile radius)</td>
<td>0.003</td>
<td>-0.001</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>27.669**</td>
<td>19.777**</td>
<td>-0.821</td>
</tr>
</tbody>
</table>

\[\chi (\text{Wh}) \]
\[\rho (\text{Ws}) \]

* 0.05 < p < 0.10, ** p < 0.05, White-adjusted standard errors for OLS
Policy experiments
Good and bad scenario

• Policy experiments
 – based on (1 x 1) km over-layed raster grids
 – with socio-economic census data
 – procedure
 ▪ determine affected individuals
 ▪ recalculate individual local food landscape

• “Bad” scenario
 – fast food
 – reduce access with 1 in areas with >6 fast food outlets per km²
 – 563 fast food restaurants reduced by 15
 – 178 people directly affected

• “Good” scenario
 – grocery stores
 – increase access with 1 in areas with >40% below FPL and >40% with less than high school
 – 94 grocery stores increased by 13
 – 74 people directly affected
Spatial simulation

- Spatial model
 - includes spatial heterogeneity and spatial dependence
 - policy effect becomes location dependent

\[
h = \lambda Wh + X\beta + \gamma_1 + N\gamma_2 + \epsilon, \quad \epsilon = \rho W\epsilon + \mu
\]

\[
= (I-\lambda W)^{-1} [X\beta + \gamma_1 + N\gamma_2 + (I-\rho W)^{-1} \mu]
\]

- Spatial multiplier
 - induces spillover effects

\[
(I-\lambda W)^{-1} = I + \lambda W + \lambda^2 W^2 + \lambda^3 W^3 + ...
\]
Average policy effects

Bad scenario

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Indirect</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.011*</td>
<td>-0.034</td>
<td>-0.045</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>z-value / 2 mile radius</td>
<td>-44.409</td>
<td>-27.302</td>
<td>-31.875</td>
</tr>
</tbody>
</table>

* Directly affected 178 out of 3,550 by -0.22 BMI (= 0.67 kg)

Good scenario

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Indirect</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.012*</td>
<td>-0.042</td>
<td>-0.054</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>z-value / 2 mile radius</td>
<td>-17.080</td>
<td>-9.961</td>
<td>-11.483</td>
</tr>
</tbody>
</table>

* Directly affected 74 out of 3,550 by -0.58 BMI (= 1.78 kg)
Total policy effects
Conclusions
Results and implications

- Stronger test of environmental impacts on obesity
 - micro data
 - spatially explicit, network and neighborhood effects
 - selection effect fast food outlets and individual location
 - note, for urban food markets

- Impact
 - positive for fast food
 - negative for grocery stores
 - grocery store effect 2.5 times as big as fast food effect

- Policy implications
 - health zoning
 - LA, two-year moratorium on fast food restaurants
 - increase availability nutritious foods
 - restrictions on store licenses
 - policy design and impact
 - selection target area
 - demographic and neighborhood criteria