Immigrant Concentration and Language Acquisition in U.S. Metropolitan Areas

Julia Beckhusen, Raymond J.G.M. Florax, Brigitte S. Waldorf and Thomas de Graaff

NARSC 2009

November 20, 2009
Introduction

A common language facilitates social interaction
Introduction

- A common language facilitates social interaction
- Interaction leads to trade
Introduction

- A common language facilitates social interaction
- Interaction leads to trade
- Trade leads to revenue
A common language facilitates social interaction

Interaction leads to trade

Trade leads to revenue

Revenue increases with the probability of meeting members of the majority
A common language facilitates social interaction
Interaction leads to trade
Trade leads to revenue
Revenue increases with the probability of meeting members of the majority
Probability of learning the host language
Communication can occur in a variety of places around the immigrant’s residence.
Communication can occur in a variety of places around the immigrant’s residence

Place of residence and place of work
Motivation

- Communication can occur in a variety of places around the immigrant’s residence
- Place of residence and place of work
- Spatial scales
Motivation

- Communication can occur in a variety of places around the immigrant’s residence
- Place of residence and place of work
- Spatial scales
- How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language?
Motivation

- Communication can occur in a variety of places around the immigrant’s residence
- Place of residence and place of work
- Spatial scales
- How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language?
- Does this vary across immigrant groups?
Language Acquisition

- Influenced by
 - personal characteristics
 - characteristics of their location
Language Acquisition

- Influenced by
 - personal characteristics
 - characteristics of their location
- The ethnic distribution of their location
Language Acquisition

- Influenced by
 - personal characteristics
 - characteristics of their location
- The ethnic distribution of their location
 - Residential segregation
Language Acquisition

- Influenced by
 - personal characteristics
 - characteristics of their location
- The ethnic distribution of their location
 - Residential segregation
 - Occupational segregation
Lazear (1999): theoretical foundation

- Based on a random encounter model
Lazear (1999): theoretical foundation

- Based on a random encounter model
- Trade occurs when two individuals meet who share the same language; meeting probability, p_x
Lazear (1999): theoretical foundation

- Based on a random encounter model
- Trade occurs when two individuals meet who share the same language; meeting probability, p_x
- Gains from trade normalized to 1 so that expected revenue $= 1 - p_x$
Lazear (1999): theoretical foundation

Based on a random encounter model

Trade occurs when two individuals meet who share the same language; meeting probability, p_x

Gains from trade normalized to 1 so that expected revenue $= 1 - p_x$

Individual specific cost, t_j; t_j has a pdf and cdf, $g(t_j)$ and $G(t_j)$, respectively.
Lazear (1999): theoretical foundation

- \(\text{prob} (\text{Eng}) = f(p_x, p_x^2) \)
Lazear (1999): theoretical foundation

- \(prob(Eng) = f(p_x, p_x^2)\)
- **Result**: language proficiency is inversely related to the proportion of a particular immigrant group
Lazear (1999): theoretical foundation

- \(\text{prob}(Eng) = f(p_x, p_x^2) \)
- Result: language proficiency is inversely related to the proportion of a particular immigrant group
- Spatial scale
Lazear (1999): theoretical foundation

- \(\text{prob}(\text{Eng}) = f(p_x, p_x^2) \)
- Result: language proficiency is inversely related to the proportion of a particular immigrant group
- Spatial scale
Lazear (1999): theoretical foundation

- \(\text{prob}(\text{Eng}) = f(p_x, p_x^2) \)
- Result: language proficiency is inversely related to the proportion of a particular immigrant group
- Spatial scale
New Model

- The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales.
New Model

- The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales

- $p_{res} = \frac{I}{P}$; $p_{occ} = \frac{I_s}{P_s}$
New Model

- The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales

 $p_{res} = \frac{I}{P} ; p_{occ} = \frac{I_s}{P_s}$

 $p^{m}_{res} = \frac{I^m}{P^m}$
The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales:

- $p_{res} = \frac{I}{P}$; $p_{occ} = \frac{I_s}{P_s}$
- $p_{res}^m = \frac{I^m}{P^m} = \frac{I_{puma}}{P^m} + \frac{I_{msa}}{P^m}$
The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales

- $p_{res} = \frac{I}{P}$; $p_{occ} = \frac{I_s}{P_s}$
- $p_{res}^m = \frac{I_m}{P_m} = \frac{I_{puma}}{P_m} + \frac{I_{msa}}{P_m} = p_{res}^{puma} + p_{res}^{msa}$
New Model

- The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales.
 - $p_{res} = \frac{I}{p}$; $p_{occ} = \frac{I_s}{p_s}$
 - $p_{res}^m = \frac{I_m}{p_m} = \frac{p_{puma}}{p_m} + \frac{I_{msa}}{p_m} = p_{res}^{puma} + p_{res}^{msa}$
 - $p_{occ}^m = \frac{I_m}{p_m}$
The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales:

- $p_{\text{res}} = \frac{I}{P} ; p_{\text{occ}} = \frac{I_s}{P_s}$
- $p_{\text{res}}^m = \frac{I_m}{P_m} = \frac{I_{\text{puma}}}{P_m} + \frac{I_{\text{msa}}}{P_m} = p_{\text{res}}^{\text{puma}} + p_{\text{res}}^{\text{msa}}$
- $p_{\text{occ}}^m = \frac{I_s}{P_m} = \frac{I_{\text{puma}}}{P_m} + \frac{I_{\text{msa}}}{P_m}$
The meeting probability, p_x is expanded to account for interactions at different locations and at different spatial scales

- $p_{res} = \frac{I}{p}$; $p_{occ} = \frac{I_s}{p_s}$

- $p_{res}^m = \frac{I^m}{p^m} = \frac{I_{puma}^m}{p^m} + \frac{I_{msa}^m}{p^m} = p_{res}^{puma} + p_{res}^{msa}$

- $p_{occ}^m = \frac{I_s^m}{p_s^m} = \frac{I_{puma}^s}{p_s^m} + \frac{I_{msa}^s}{p_s^m} = p_{occ}^{puma} + p_{occ}^{msa}$
New Model

Meeting probability

\[\eta_x = \mu (p_{res}^{puma} + p_{res}^{msa}) + (1 - \mu) (p_{occ}^{puma} + p_{occ}^{msa}) \]

- *puma* indicates residential neighborhood of immigrant
- *msa* indicates all other neighborhoods in the MSA
- \(\mu \) fraction of time spent away from work

Julia Beckhusen, Raymond J.G.M. Florax, Brigitte S. Waldorf and Thomas de Graaff

Immigrant Concentration and Language Acquisition
Overview

- 2005 ACS data extracted from IPUMS database
Overview

- 2005 ACS data extracted from IPUMS database
- **Mexican and Chinese immigrants living in metropolitan areas of the United States**
Overview

- 2005 ACS data extracted from IPUMS database
- Mexican and Chinese immigrants living in metropolitan areas of the United States
- 25 years or older when immigrated and not in school
Overview

- 2005 ACS data extracted from IPUMS database
- Mexican and Chinese immigrants living in metropolitan areas of the United States
- 25 years or older when immigrated and not in school
- 7,212 Mexican immigrants and 2,006 Chinese immigrants
Highlights of Dataset

English Fluency

- Chinese: 66%
- Mexican: 34%

Citizenship

- Chinese: 72%
- Mexican: 28%
Highlights of Dataset

Mexican Immigrants
- High school: 33%
- Less than High School: 60%
- Bachelor's degree or more: 7%

Chinese Immigrants
- Less than High School: 17%
- Bachelor's degree or more: 55%
- High school: 28%
Highlights of Dataset

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mexican Immigrants</th>
<th>Mexican Immigrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>p^p_x</td>
<td>0.16</td>
<td>0.044</td>
</tr>
<tr>
<td>p^m_x</td>
<td>0.11</td>
<td>0.016</td>
</tr>
<tr>
<td>p^{puma}_{res}</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>$p^{msa}_{res} \mu$</td>
<td>0.05</td>
<td>0.008</td>
</tr>
<tr>
<td>$p^{puma}_{occ} (1 - \mu)$</td>
<td>0.08</td>
<td>0.009</td>
</tr>
<tr>
<td>$p^{msa}_{occ} (1 - \mu)$</td>
<td>0.08</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Residential and Occupational Segregation by PUMA

Mexican immigrants

Chinese immigrants

Julia Beckhusen, Raymond J.G.M. Florax, Brigitte S. Waldorf and Thomas de Graaff

Immigrant Concentration and Language Acquisition
Marginal values for non-citizen, married, 45 year-old males who have lived in the U.S. for 12 years, have a high school degree and average income

<table>
<thead>
<tr>
<th></th>
<th>Mexican Immigrants</th>
<th></th>
<th>Chinese Immigrants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_x</td>
<td>-0.9746***</td>
<td>-</td>
<td>-3.197**</td>
<td>-</td>
</tr>
<tr>
<td>p_x^2</td>
<td>1.0543**</td>
<td>-</td>
<td>6.494</td>
<td>-</td>
</tr>
<tr>
<td>p_x^m</td>
<td>-</td>
<td>-1.4321***</td>
<td>-</td>
<td>-11.436***</td>
</tr>
<tr>
<td>$(p_x^m)^2$</td>
<td>-</td>
<td>2.7415**</td>
<td>-</td>
<td>113.631**</td>
</tr>
</tbody>
</table>
Lazear Replication

Mexican immigrants

Chinese immigrants

P(ENG)

P(ENG)

0
0

0.2
0.4
0.6
0.8
1

0.2
0.4
0.6
0.8
1

0.00
0.20
0.40
0.60
0.80

PUMA

MSA

PUMA

MSA

Immigrant Concentration and Language Acquisition

Julia Beckhusen, Raymond J.G.M. Florax, Brigitte S. Waldorf and Thomas de Graaff

NARSC 2009
Marginal effects for non-citizen, married, 45 year-old males who have lived in the U.S. for 12 years, have a high school degree and average income

<table>
<thead>
<tr>
<th></th>
<th>Mexican Immigrants</th>
<th>Chinese Immigrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{res}^{pumap_{res}} \mu$</td>
<td>-4.0310^{**}</td>
<td>-149.31^{***}</td>
</tr>
<tr>
<td>$(p_{res}^{pumap_{res}})^2 \mu$</td>
<td>15.423^{**}</td>
<td>12233.5^{**}</td>
</tr>
<tr>
<td>$p_{res}^{msa} \mu$</td>
<td>-0.3297</td>
<td>-3.9355</td>
</tr>
<tr>
<td>$(p_{res}^{msa})^2 \mu$</td>
<td>2.2762^{***}</td>
<td>-106.15</td>
</tr>
<tr>
<td>$p_{occ}^{pumap_{occ}} (1 - \mu)$</td>
<td>-0.9811</td>
<td>0.3125</td>
</tr>
<tr>
<td>$(p_{occ}^{pumap_{occ}})^2 (1 - \mu)$</td>
<td>-1.0718</td>
<td>61.884^{*}</td>
</tr>
<tr>
<td>$p_{occ}^{msa} (1 - \mu)$</td>
<td>-1.2829^{**}</td>
<td>-0.7081</td>
</tr>
<tr>
<td>$(p_{occ}^{msa})^2 (1 - \mu)$</td>
<td>1.9057</td>
<td>-68.981</td>
</tr>
</tbody>
</table>
Predicted Probability of Speaking English

Mexican immigrants

Chinese immigrants

Julia Beckhusen, Raymond J.G.M. Florax, Brigitte S. Waldorf and Thomas de Graaff

Immigrant Concentration and Language Acquisition
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language?
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language?
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES

Does this vary across immigrant groups?
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES

Does this vary across immigrant groups?
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES

Does this vary across immigrant groups? YES
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES

Does this vary across immigrant groups? YES

- **Chinese immigrants**: residential population proportions in their immediate neighborhood
- **Mexican immigrants**: residential population proportions in both their immediate and surrounding neighborhoods; occupational population proportions in their metropolitan area

Extensions: expand data set; endogeneity between location choice and language acquisition
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES

Does this vary across immigrant groups? YES

Chinese immigrants: residential population proportions in their immediate neighborhood

Mexican immigrants: residential population proportions in both their immediate and surrounding neighborhoods; occupational population proportions in their metropolitan area

Extensions: expand data set; endogeneity between location choice and language acquisition
How does the probability of meeting other English speakers in different locations impact the probability of acquiring the host language? YES

Does this vary across immigrant groups? YES

Chinese immigrants: residential population proportions in their immediate neighborhood

Mexican immigrants: residential population proportions in both their immediate and surrounding neighborhoods; occupational population proportions in their metropolitan area

Extensions: expand data set; endogeneity between location choice and language acquisition