The Geographic Diversity of U.S. Nonmetropolitan Growth Dynamics: A Geographically Weighted Regression Approach

by

Mark Partridge, Ohio State University
Dan Rickman, Oklahoma State University
Kamar Ali & Rose Olfert, University of Saskatchewan

Prepared for presentation at the Department of Agriculture Economics, Purdue University

October 19, 2007

Available at: http://aede.osu.edu/programs/Swank/

Mark Partridge
Swank Professor in Rural-Urban Policy
Swank Program in Rural-Urban Policy
Motivation

• Heterogeneous preferences and land use suggest different marginal growth effects
 – Persistent decline in resource based communities
 – High amenity areas are experiencing rapid growth
 – Exurbia faces sprawl and managing growth
 – Rust Belt cities to sprawling Sunbelt cities.
• University attainment (Simon, 1998+)
 – Amenity driven migration to “high quality of life” locales
 • Richard Florida creative class effects (Adamson et al. 2004)
 • Could create a Brain Drain in low-amenity areas.
 • Life cycle effects and retirement migration.
 • Amenities are usually superior goods.
 – Knowledge economy effects (endogenous growth)

• Other examples:
 • Immigration—rural vs. urban effects
 – (Florida-like diversity effects)
 • Distance to the urban center—terrain or multiple urban centers.
 • Climate (Deller et al., 2001)

• New Economic Geography & Regional Science—space matters
• Global regression techniques (OLS or SEM) assume common responses or β
• Misleading if regression coefs β are hetero
 – OLS coef could be + (sign) but some locations have – (sign)
 – OLS could be insign, but half the sample is positive (sign) and the other half neg (sign)
 – At the very least, it would be helpful to have a way to guide global interactions that aren’t ad hoc.
 • E.g., (say) interact Midwest dummy with (say) education.
Underlying Model

• Structural supply and demand model of job growth
 – Solve for underlying reduced-form model
• Firms maximize π in location i
• $\Pi_i = TR_i - TC_i$
 – Profits vary due to differing agglomeration econ. vs congestion effects and other factors
Solve for the indirect profit function:

\[\Pi_i = F_i(w_i, \text{DIST}_{ij}, K_H_i, N_i, U_S_i, \cdot) \]

- Wages, distance within urban hierarchy, human capital (KH), population density (N), U.S. trends.
- Greater productivity in \(i \) increases a firm’s willingness to locate there.
- In a Roback (1982) sense, perfect mobility, greater productivity implies firms are willing to pay higher \(w_i \) and \(r_i \).
Regional differentials in Π induce shifts in firm location and employment. (emp is a function of firms)

$$\Delta EMP^D_i = f_i(\Pi^k_i - \Pi^kUS), \quad f''_{\Pi ki}() > 0$$
• Household location (Roback, 1982):
 – Tradeoff higher wages & rents for amenities (S_i) and endog. urban amenities/congestion from pop. density N_i

• Maximize indirect utility:
 – $V_i = G_i(w_i, \text{DIST}_{ij}, N_i, S_i, \cdot)$
 • Households are willing to tradeoff higher r_i and lower w_i for better combination of amenities
Regional differentials in V induce shifts in household location and employment to equalize V across regions.

$$\Delta EMP^S_i = g_i(V_i - V_{US}), \quad g'_{Vil}() > 0.$$
• Solve for reduced form in a dynamic sense:
• set change in LD = change in LS
 – Assume long-run equil regional unemployment rates.
• Ala Blanchard and Katz (1992), etc.
• \(EmpGr_i = H_i(DIST_{ij}, N_i, S_i, KH_i, \cdot) \)
• Note that the function H varies across all \(i \)
Empirical Model

Global OLS—common a’s (or β’s) across all \(i = 1, 2, ..., n \)

\[y_i = a_0 + a_1x_{i1} + a_2x_{i2} + \cdots + a_kx_{ik} + \varepsilon_i \]
Spatial Econometrics

- SEM model uses a weight matrix to control for the spatial correlation in the residuals.
- \(y = X\beta + u, \quad u = \lambda Wu + \varepsilon \)
- \(W \) is a \(n \times n \) row standardized connectivity matrix
- \(w_{ij} = 1/d_{ij}^2 \) where \(d_{ij} \) is the distance between \(i \) and \(j \).
- But still a common \(\beta \) vector across space
• GWR Model
 – Allows different regression coefficients for all the \(i \) observations.

\[
y_i = \alpha_{i0} + \alpha_{i1} x_1 + \alpha_{i2} x_2 + \cdots + \alpha_{ik} x_k + \epsilon_i \\
a_i^* = (X'W_i X)^{-1} X'W_i Y
\]

 • \(i = 1, 2, \ldots, n \), \(n \) = number of observations

 • \(W_i = \text{diag}(w_{i1}, w_{i2}, \ldots, w_{in}) \)

 \[
 w_{ij} = e^{-\left(\frac{d_{ij}}{h}\right)^2}
 \]
 – \(d_{ij} \leq h \) and \(h \) is the bandwidth
 – Bandwidth could be a fixed distance or optimal number of neighbors chosen by AIC.
 • \(h \) = nearest 846 nonmetro neighbors in nonmetro sample
 • \(h \) = nearest 893 metro neighbors in metro sample

Swank Program in Rural-Urban Policy
• Advantages of the GWR model
 – Heterogeneity in the regression coef
 – Accounts for spurious “spatial error” corr. that arises due to corr. of regress coef and X values.
 – Multicollinearity can be averaged across 1,000s of regressions.
 – Has fixed effects due to indiv constant terms
 – Can map the coefficients

• Weaknesses include less efficiency due to smaller sample than global approaches
 – Overwhelming amount of output! n regressions
Empirical Model

- Dependent variable is 1990-2004 total county employment growth
 - 2003 U.S. Census metro definitions
 - 1972 nonmetro counties, 1,057 metro counties

- Explanatory X are measured in 1990 to avoid endogeniety
 - Initial educational attainment shares (college grads!)
 - Climate and topography measures
 - “Disequilibrium” economic controls including industry mix
Several spatial measures that reflect proximity to cities higher in the urban hierarchy (land use)

- Rural counties: distance in km to nearest urban center of any size
- Micropolitan and MA counties: distance in km to center of urban core if multi-county, 0 for single county urban area;
• Spatial measure—continued
 – incremental dist (kms) from the cnty to reach an MA
 – the incremental distances to reach urban centers of at least 250,000, at least 500,0000, and at least 1.5 million population
 – if nearest area is higher-tiered, remaining tier distances set equal to 0
– Example 1: Rawlins, Wyoming
– Rawlins Census 2000 population: 8,538, rural county

 • **100** miles to Laramie WY: distance to nearest urban area (MICRO)
 • 121 miles to Casper, WY: incremental distance to MA: **21** miles
 • 190 miles to Ft. Collins, CO: incremental dist to MA>250,000: **69** miles
 • 243 miles to Denver, CO: incremental dist to MA>500,000: **53** miles;
 • since Denver is 2.5 mill.>1.5million, the other incremental dist var. for >1.5 million = **0**.
 – We convert this to kms
Rural Gilmer County, West Virginia: Glenville is the county seat
- 55 miles to Clarksburg (urban area micropolitan: 91,509)
- 5 incremental miles (60 total-55) to Parkersburg (nearest MA: 161,907)
- 27 incremental miles (87 total-60) to Charleston (nearest MA>250K: 307,689)
- 70 incremental miles (157 total-87) to Pittsburgh (nearest MA>500K: 2.5mill.)
- 0 incremental miles to reach MA of at least 1.5 million

These capture potential distance penalties for access or growth shadow effects
Empirical Results

- Nonmetropolitan results
 - OLS, SEM, median GWR coefs are similar
 - GWR is a significant statistical improvement
 - Spatial heterogeneity! One Size Does NOT Fit All!
 - 27 of 37 coefs sign vary across the sample
 - Global coefficients can be misleading
 - E.g.: avg Jan Sun Hours is insign in OLS & SEM
 - Yet, there are positive & negative GWR coefs that are statistically different. The average effect \approx zero
 - Global models incorrectly imply little or no effect
• Sensitivity analysis shows results are robust
 • 1999 vs. 2003 MA boundaries
 • 1990-2000 emp. growth vs 1990-2004

• Maps of key results to illustrate spatial hetero.
Nonmetro Employment Change 1990-2004

1a: Variations in the Coeff. of January Temperature

Note: 2003 MA boundary definitions used
Nonmetro Employment Change 1990-2004

1b: Variations in the Coeff. of % Water Area

Note: 2003 MA boundary definitions used
Nonmetro Employment Change 1990-2004

1c: Variations in the Coeff. of Typography

Note: 2003 MA boundary definitions used
Nonmetro Employment Change 1990-2004

1d: Variations in the Coeff. of % Immigrated 1985-90

Note: 2003 MA boundary definitions used
1e: Variations in the Coeff. of College Graduates

Note: 2003 MA boundary definitions used
Metro Results

- Not emphasized (test robustness)
- The expected pattern of sprawl related growth
 - dist to center of MA is positively related to growth
- MA results have the expected spatial hetero
 - But not as much diversity as for nonmetro results.
 - Only 20 of 37 coefs significantly vary spatially
- Maps of key variables with spatial hetero in β
Metropolitan Employment Change 1990-2004

2a: Variations in the Coeff. of January Temperature

Note: 2003 MA boundary definitions used
Metro Employment Change 1990-2004

2b: Variations in the Coeff. of Typography

Note: 2003 MA boundary definitions used
Metro Employment Change 1990-2004

2c: Variations in the Coeff. of % Immigrated 1985-90

Note: 2003 MA boundary definitions used
Metro Employment Change 1990-2004

2d: Variations in the Coeff. of % College Graduates

Note: 2003 MA boundary definitions used
Policy Implications/Summary

- Global regression approaches obscure important spatial heterogeneity
 - Global approaches can obscure differences at the tails. Can be very misleading.
 - Spatial negative and positive effects offset each other

- Regional Science models often do not consider this type of hetero
 - Why are there geographical “cusps” where the X effects shift so suddenly?
• Empirical work: Global approaches give avg effect (a benchmark), but GWR helps inform the nuances of local policy.
 • Don’t abandon OLS or global approaches, but better recognize its deficiencies.

• For Policy: **One Size Does NOT Fit All!**
 • Education has mixed effects and evidence of brain drains
 • A cold winter is not uniformly a negative factor
 • Old expression: “when you seen one rural community, you only seen one rural community.”